Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Mol Biol Rep ; 49(2): 1303-1320, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807377

RESUMO

BACKGROUND: Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS: In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS: Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.


Assuntos
Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos/genética , Humanos , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerase II/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Fatores de Elongação da Transcrição/fisiologia
3.
Nucleic Acids Res ; 49(9): 4944-4953, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877330

RESUMO

Transcription elongation can be affected by numerous types of obstacles, such as nucleosome, pausing sequences, DNA lesions and non-B-form DNA structures. Spt4/5 and Elf1 are conserved transcription elongation factors that promote RNA polymerase II (Pol II) bypass of nucleosome and pausing sequences. Importantly, genetic studies have shown that Spt4/5 plays essential roles in the transcription of expanded nucleotide repeat genes associated with inherited neurological diseases. Here, we investigate the function of Spt4/5 and Elf1 in the transcription elongation of CTG•CAG repeat using an in vitro reconstituted yeast transcription system. We found that Spt4/5 helps Pol II transcribe through the CTG•CAG tract duplex DNA, which is in good agreement with its canonical roles in stimulating transcription elongation. In sharp contrast, surprisingly, we revealed that Spt4/5 greatly inhibits Pol II transcriptional bypass of CTG and CAG slip-out structures. Furthermore, we demonstrated that transcription elongation factor Elf1 individually and cooperatively with Spt4/5 inhibits Pol II bypass of the slip-out structures. This study uncovers the important functional interplays between template DNA structures and the function of transcription elongation factors. This study also expands our understanding of the functions of Spt4/5 and Elf1 in transcriptional processing of trinucleotide repeat DNA.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , DNA de Forma B/química , DNA/química , Proteínas Nucleares/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia , Repetições de Trinucleotídeos
4.
Cell Cycle ; 20(5-6): 465-479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33590780

RESUMO

In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.


Assuntos
Cromatina/química , Cromatina/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/fisiologia , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/fisiologia , Animais , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiologia , Humanos , Nucleossomos/química , Nucleossomos/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia
5.
Exp Cell Res ; 399(2): 112445, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417923

RESUMO

Melanoma is characterized by high mortality and poor prognosis due to metastasis. AFF4 (AF4/FMR2 family member 4), as a scaffold protein, is a component of the super elongation complex (SEC), and is involved in the progression of tumors, e.g., leukemia, head and neck squamous cell carcinoma (HNSCC). However, few studies on AFF4 have focused on melanoma. Here, AFF4 expression levels and clinicopathological features were evaluated in melanoma tissue samples. Then, we performed cell proliferation, migration and invasion assays in A375 and A2058 cells lines in vitro to evaluate the role of AFF4 in melanoma. The effects of AFF4 knockdown in vivo were characterized via a xenograft mouse model. Finally, the correlation between c-Jun and AFF4 protein levels in melanoma was analyzed by rescue assay and immunohistochemistry (IHC). We found that AFF4 expression was upregulated in melanoma tumor tissues and that AFF4 protein expression was also closely related to the prognosis of patients with cutaneous melanoma. Moreover, AFF4 could promote the invasion and migration of melanoma cells by mediating epithelial to mesenchymal transition (EMT). AFF4 might regulate c-Jun activity to promote the invasion and migration of melanoma cells. Importantly, c-Jun was regulated by the AFF4 promoted melanoma tumorigenesis in vivo. Taken together, AFF4 may be a novel oncogene that promotes melanoma progression through regulation of c-Jun activity.


Assuntos
Melanoma/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Neoplasias Cutâneas/patologia , Fatores de Elongação da Transcrição/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-jun/metabolismo , Neoplasias Cutâneas/genética
7.
Elife ; 92020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32324136

RESUMO

Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.


Assuntos
Desenvolvimento Embrionário/fisiologia , Células Germinativas/fisiologia , Neurônios/fisiologia , Serotonina/fisiologia , Estresse Fisiológico/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Temperatura Alta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fatores de Elongação da Transcrição/fisiologia
8.
Gut ; 69(2): 329-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439637

RESUMO

OBJECTIVE: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS: We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION: In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Chaperonas de Histonas/fisiologia , Neoplasias Hepáticas/fisiopatologia , Estresse Oxidativo/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes/métodos , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/fisiopatologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/biossíntese , Fatores de Elongação da Transcrição/genética , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 116(44): 22140-22151, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611376

RESUMO

Soon after exposure to genotoxic reagents, mammalian cells inhibit transcription to prevent collisions with repair machinery and to mount a proper DNA damage response. However, mechanisms underlying early transcriptional inhibition are poorly understood. In this report, we show that site-specific acetylation of super elongation complex (SEC) subunit AFF1 by p300 reduces its interaction with other SEC components and impairs P-TEFb-mediated C-terminal domain phosphorylation of RNA polymerase II both in vitro and in vivo. Reexpression of wild-type AFF1, but not an acetylation mimic mutant, restores SEC component recruitment and target gene expression in AFF1 knockdown cells. Physiologically, we show that, upon genotoxic exposure, p300-mediated AFF1 acetylation is dynamic and strongly correlated with concomitant global down-regulation of transcription-and that this can be reversed by overexpression of an acetylation-defective AFF1 mutant. Therefore, we describe a mechanism of dynamic transcriptional regulation involving p300-mediated acetylation of a key elongation factor during genotoxic stress.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Acetilação , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Instabilidade Genômica , Humanos , Fosforilação , RNA Polimerase II/metabolismo , Estresse Fisiológico , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia
10.
RNA ; 25(10): 1298-1310, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31289129

RESUMO

There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in Saccharomyces cerevisiae and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Saccharomyces cerevisiae/metabolismo , Spliceossomos , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Imunoprecipitação , Ligação Proteica , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética , Fatores de Elongação da Transcrição/metabolismo
11.
Sci Rep ; 9(1): 10183, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308435

RESUMO

Facilitates chromatin transcription (FACT) is a histone chaperone, which accomplishes both nucleosome assembly and disassembly. Our combined cryo-electron microscopy (EM) and native mass spectrometry (MS) studies revealed novel key steps of nucleosome reorganization conducted by a Mid domain and its adjacent acidic AID segment of human FACT. We determined three cryo-EM structures of respective octasomes complexed with the Mid-AID and AID regions, and a hexasome alone. We discovered extensive contacts between a FACT region and histones H2A, H2B, and H3, suggesting that FACT is competent to direct functional replacement of a nucleosomal DNA end by its phosphorylated AID segment (pAID). Mutational assays revealed that the aromatic and phosphorylated residues within pAID are essential for octasome binding. The EM structure of the hexasome, generated by the addition of Mid-pAID or pAID, indicated that the dissociation of H2A-H2B dimer causes significant alteration from the canonical path of the nucleosomal DNA.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina/química , Microscopia Crioeletrônica/métodos , DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Histonas/metabolismo , Histonas/fisiologia , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Nucleossomos/fisiologia , Ligação Proteica/fisiologia , Fatores de Elongação da Transcrição/fisiologia
12.
Nucleic Acids Res ; 47(12): 6488-6503, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020314

RESUMO

Ribosomal RNA synthesis in Escherichia coli involves a transcription complex, in which RNA polymerase is modified by a signal element on the transcript, Nus factors A, B, E and G, ribosomal protein S4 and inositol mono-phosphatase SuhB. This complex is resistant to ρ-dependent termination and facilitates ribosomal RNA folding, maturation and subunit assembly. The functional contributions of SuhB and their structural bases are presently unclear. We show that SuhB directly binds the RNA signal element and the C-terminal AR2 domain of NusA, and we delineate the atomic basis of the latter interaction by macromolecular crystallography. SuhB recruitment to a ribosomal RNA transcription complex depends on the RNA signal element but not on the NusA AR2 domain. SuhB in turn is required for stable integration of the NusB/E dimer into the complex. In vitro transcription assays revealed that SuhB is crucial for delaying or suppressing ρ-dependent termination, that SuhB also can reduce intrinsic termination, and that SuhB-AR2 contacts contribute to these effects. Together, our results reveal functions of SuhB during ribosomal RNA synthesis and delineate some of the underlying molecular interactions.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Monoéster Fosfórico Hidrolases/química , RNA Ribossômico/biossíntese , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Modelos Moleculares , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/fisiologia
13.
Mol Cell ; 72(4): 687-699.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318445

RESUMO

Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.


Assuntos
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Iniciação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiologia , Proteínas Nucleares , Nucleossomos , Fatores de Alongamento de Peptídeos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
14.
Mol Cell ; 71(6): 911-922.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30122535

RESUMO

NusG/Spt5 proteins are the only transcription factors utilized by all cellular organisms. In enterobacteria, NusG antagonizes the transcription termination activity of Rho, a hexameric helicase, during the synthesis of ribosomal and actively translated mRNAs. Paradoxically, NusG helps Rho act on untranslated transcripts, including non-canonical antisense RNAs and those arising from translational stress; how NusG fulfills these disparate functions is unknown. Here, we demonstrate that NusG activates Rho by assisting helicase isomerization from an open-ring, RNA-loading state to a closed-ring, catalytically active translocase. A crystal structure of closed-ring Rho in complex with NusG reveals the physical basis for this activation and further explains how Rho is excluded from translationally competent RNAs. This study demonstrates how a universally conserved transcription factor acts to modulate the activity of a ring-shaped ATPase motor and establishes how the innate sequence bias of a termination factor can be modulated to silence pervasive, aberrant transcription.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/fisiologia , Fatores de Transcrição/fisiologia , Terminação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Proteínas de Bactérias , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Fatores de Alongamento de Peptídeos/metabolismo , Conformação Proteica , RNA Bacteriano , Fator Rho/metabolismo , Fator Rho/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
15.
Genes Dev ; 32(1): 26-41, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378787

RESUMO

Regulation by gene-distal enhancers is critical for cell type-specific and condition-specific patterns of gene expression. Thus, to understand the basis of gene activity in a given cell type or tissue, we must identify the precise locations of enhancers and functionally characterize their behaviors. Here, we demonstrate that transcription is a nearly universal feature of enhancers in Drosophila and mammalian cells and that nascent RNA sequencing strategies are optimal for identification of both enhancers and superenhancers. We dissect the mechanisms governing enhancer transcription and discover remarkable similarities to transcription at protein-coding genes. We show that RNA polymerase II (RNAPII) undergoes regulated pausing and release at enhancers. However, as compared with mRNA genes, RNAPII at enhancers is less stable and more prone to early termination. Furthermore, we found that the level of histone H3 Lys4 (H3K4) methylation at enhancers corresponds to transcriptional activity such that highly active enhancers display H3K4 trimethylation rather than the H3K4 monomethylation considered a hallmark of enhancers. Finally, our work provides insights into the unique characteristics of superenhancers, which stimulate high-level gene expression through rapid pause release; interestingly, this property renders associated genes resistant to the loss of factors that stabilize paused RNAPII.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Elongação da Transcrição Genética , Animais , Cromatina/química , Proteínas Cromossômicas não Histona/fisiologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/fisiologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Camundongos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , Sítio de Iniciação de Transcrição , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia
16.
Nucleic Acids Res ; 45(11): 6362-6374, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28379497

RESUMO

RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone-DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the 'jaws' of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA-histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone-DNA interactions.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Proteínas Nucleares/fisiologia , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Fatores de Elongação da Transcrição/fisiologia , DNA Fúngico/fisiologia , Regulação Fúngica da Expressão Gênica , Nucleossomos/fisiologia , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica
17.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122976

RESUMO

All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells.


Assuntos
Vírus da Leucose Aviária/genética , Proteínas de Ciclo Celular/fisiologia , DNA Viral/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Vírus da Leucose Aviária/enzimologia , Embrião de Galinha , Sequência Conservada , Células HEK293 , Humanos , Integrases/fisiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Integração Viral
18.
RNA ; 22(4): 571-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873599

RESUMO

Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation. Taken together, these data suggest that TCERG1 binds independently to elongation and splicing complexes, thus performing their coupling by transient interactions rather than by stable association with one or the other complexes. This finding has conceptual implications for understanding the coupling between transcription and RNA processing.


Assuntos
Splicing de RNA , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/fisiologia , Núcleo Celular/metabolismo , Genes Reporter , Células HEK293 , HIV-1/genética , Humanos , Transporte Proteico
19.
Mol Cell Biol ; 36(7): 1194-205, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830226

RESUMO

Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4(+) T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1.


Assuntos
HIV-1/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Latência Viral , Sequência de Aminoácidos , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , DNA , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Dados de Sequência Molecular , Proteínas Repressoras/genética , Fatores de Elongação da Transcrição/genética
20.
J Cell Biochem ; 117(3): 612-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26264132

RESUMO

TCERG1 was characterized previously as a repressor of the transcription factor C/EBPα through a mechanism that involved relocalization of TCERG1 from nuclear speckles to pericentromeric regions. The inhibitory activity as well as the relocalization activity has been demonstrated to lie in the amino terminal half of the protein, which contains several discrete motifs including an imperfect glutamine-alanine (QA) repeat. In the present study, we showed that deletion of this domain completely abrogated the ability of TCERG1 to inhibit the growth arrest activity of C/EBPα. Moreover, the QA repeat deletion mutant of TCERG1 lost the ability to be relocalized from nuclear speckles to pericentromeric regions, and caused an increase in the average size of individual speckles. We also showed that deletion of the QA repeat abrogated the complex formation between TCERG1 and C/EBPα. Examination of mutants with varying numbers of QA repeats indicated that a minimal number of repeats are required for inhibitory activity as well as relocalization ability. These data contribute to our overall understanding of how TCERG1 can have gene-specific effects in addition to its more general roles in coordinating transcription elongation and splicing.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Fatores de Elongação da Transcrição/química , Animais , Células COS , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Chlorocebus aethiops , Células HEK293 , Humanos , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Fatores de Elongação da Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...